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Abstract. Using results of the anisotropic surface tension of the two-dimensional Ising 
model on a square lattice, the exact location of a new class of transition between different 
cluster shapes is obtained at all temperatures below Tc, in systems with conserved total 
magnetization and periodic boundary conditions. We study the general cases of anisotropic 
couplings and rectangular system geometries. Monte Carlo simulations confirm our findings. 
Finite-size effects relevant to the simulations are also analysed. Generalizations to other 
system topologies, and the saddle point associated with the transitions, are discussed. 

1. Introduction 

The subject of equilibrium crystal shape has a long history (Wulff 1901, Herring 1953). 
Due  to advances in both theoretical understanding in related phase transitions and  in 
experimental techniques, it has received considerable recent attention (Wortis 1988, 
Zia 1988). 

The problem studied traditionally deals with infinite systems, in which the crystal 
is an  isolated object. Considerations of the boundary never enter, except in the case 
of semi-infinite systems in which the crystal is an  object attached to one (Winterbottom 
1967) or  more (Zia et a1 1988) boundaries. In other words, the crystal volume is 
negligible compared with the surrounding medium. Not surprisingly, if the crystal 
occupies a finite fraction of the system, we should expect non-trivial effects due to the 
boundaries, which carry information about the geometry and topology of the system. 
In particular, transitions between a ‘localized’ cluster and  an ‘extended’ one become 
possible, since the system will, in equilibrium, favour the crystal shape with the lowest 
total free energy. 

In this paper, we explore such transitions, both analytically and  by simulations, in 
a simple system-the two-dimensional ( 2 ~ )  Ising model on a square lattice. Of course, 
to have a droplet, we must work with fixed total magnetization, below the critical 
temperature T,. Note that these transitions occur within the co-existence curve. Key 
to the results is the knowledge of the exact anisotropic surface tension and equilibrium 
crystal shape for this system. 

The exact location of the transition at all temperature is given in section 2, explicitly 
for the equal-coupling case, and implicitly for the case of anisotropic coupling and  
system shape. Along with a detailed discussion of the finite-size effects (section 3), 
Monte Carlo simulation results, for a limited range of temperature, are presented 
(section 4) which confirm the exact results. The dependence of such morphological 
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transitions on the topology of the system, as well as the associated saddle point, are 
discussed in section 5.  

2. Exact results 

We begin by considering the thermodynamic limit of the two-dimensional Ising model 
on a square lattice, with periodic boundary conditions ( PBC), for which extensive exact 
results exist. We will use the spin language, with J > 0 being the isotropic, ferromagnetic 
nearest-neighbour coupling. For temperatures T below the critical one T,, the spon- 
taneous magnetization M (  T )  is a celebrated function (Onsager 1944, Yang 1952). If 
we constrain the magnetization 4 to lie within the range ( - M ,  + M ) ,  then the system 
phase separates into two regions with volume fractions appropriate to the Maxwell 
construction. Thus, if 4 = 0, the two regions will each have half the volume of the 
total system. Since we have a square system with PBC, it is clear from symmetry alone 
that each region must be just a strip, aligned with one of the axes (figure l (a ) ) .  If we 
vary 6 toward, say, -M,  then the width of the + M  strip must decrease accordingly. 
However, if 4 is very near -M,  we expect the + M  region to assume a droplet form 
(figure l ( b ) ) ,  since the interface between the two regions will be ‘shorter’ than the 
strip case, so that it is energetically much more favourable. For 4 somewhere between 
- M and 0, the droplet-strip transition occurs. 

( b l  

Figure 1. Schematic illustrations of a snapshot of the ( a )  strip phase,  and  the ( b )  droplet  
phase. 

Crucial to the droplet-strip transformation are the surface tension (free energy per 
unit length) go of a planar interface aligned with a lattice axis and  the total surface 
free energy associated with a droplet. For the latter, both the anisotropic surface tension 
a(;), for an  interface with normal n*, as well as the equilibrium droplet shape are 
needed. Fortunately, all of these quantities are known exactly for our model (Zia and  
Avron 1982). 

In order to identify the critical magnetization & J T )  at which the droplet-strip 
transition occurs, we simply compare the free energies of the two configurations. First, 
let us use a more convenient parametrization: the fractional magnetization 

so that j Z 2  is just the volume of the +A4 phase in our L x L system. 
The free energy associated with the bulk phases is, in the L+oo limit, independenr 

of the shape of the regions. Thus, the energetics are controlled purely by E, the (total) 
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surface free energies, which are shape dependent. For a strip, which has two flat 
interfaces of length L, we have 

cs = 2aoL. (2.2) 

Note that this is independent of the volume of the strip, which fixes the width rather 
than the length of the SM region. 

For a droplet, whose shape is neither square nor circular for general T, the total 
surface energy ZD can be obtained only through the Wulff’s construction (Zia and 
Avron 1982): 

ED = 2- 

where W is the volume bounded by the Wulff’s plot and VD is the volume of the 
droplet. Since the latter is just a*, we see immediately the cause of the droplet-strip 
transition. For small (2.3) is favourable. When f reaches 

ZS is lower and the strip configuration wins. Note that this transition is not a finite 
size effect, surviving in the thermodynamic limit. 

Generalization of equation (2.4) to arbitrary dimensions d is immediate, since (2.3) 
is known (Zia and Avron 1982) for all d. We simply quote the result: 

which is valid for an Ld system with periodic boundary conditions (a  hyper-torus). 
As T varies, so do  a, and W, giving us f c (  T) as a function of T. This result reduces 

to purely geometric quantities in the limits T = O  and T,, where we know that the 
droplet shape in 2~ is a square and a circle, respectively. In the former case, the ‘length’ 
from the centre to the edge (of the square Wulff shape) is u0(=2J),  so that f,(O) = a .  
In the latter case, the ‘radius’ of the Wulff volume is go, giving us f c (  T,) = l / v .  For 
d > 2, these limits are fc(0) = d - d ’ i d - l )  and fc( T,) = ( 2 / d ) [ r ( d / 2 ) / x d ’ 2 ] ’ ’ ‘ d - l ’ .  It is 
amusing to note that as d + w ,  f ,+O:  there a slab with two (d-1)-dimensional 
interfaces always has a lower free energy, and is thus the equilibrium configuration. 

For arbitrary T < T,, not much is known exactly in general dimensions. Returning 
to d = 2, the exact a, is provided by a simple formula (Onsager 1944): 

1 -- u0(T)-2+-1n t a n h p J  
J PJ 

where 
(Zia and Avron 1982), we are not able to obtain a closed form for its volume: 

= 1 /  kBT. Although the equation describing the Wulff shape is also very simple 

-coshx , 1 (cosh 2pJ)2 [ sinh2PJ 
dx cosh-’ (2.7) 

This integral is computed numerically and the resultant phase diagram is shown in 
figure 2. 

More generally, we can consider systems with anisotropic couplings, i.e. J, # J,,, 
and/or rectangular geometry, i.e. L, # L v .  The phase diagram will be modified, while 
some new features emerge. Although the exact W can be found (by numerical integra- 
tion), since the surface tension and equilibrium shape for the unequal coupling case 
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-1.0 -0.8 - 0 . 6  -0.4 - 0 . 2  0 

Figure 2. Phase diagram of the equilibrium crystal-shape transition in an L x L 2D lsing 
model on a square lattice, with equal coupling. The bold full curve is the coexistence curve, 
the fine one is the exact location of the transition between droplet (D) and strip (S) phase. 
The broken curve is the approximation f, = 1/m 

are available in closed forms (Zia and Avron 1982), we will limit our discussions here 
only to the limits T = 0 and T = T,. In these limits, the modifications can be understood 
simply, while no essential new physics can be learnt by studying the general phase 
boundary. 

Let us define ratios pJ = Jy/Jx, pu = uy/ux and p L =  L,/L,, where U, and ay stand 
for U ( $ )  and u(E), respectively. In the low temperature limit, pu + p J ,  while near T,, 
pu = sinh 2pcJy (Zia and Avron 1982), where pc is determined via the transcendental 
equation 

sinh(2P,Jx) sinh(2p,JxpJ) = 1. 

Now for given pu and pL,  the strip may align either along 2 or 9, depending on 
whether uxL,, or uyLx is smaller. Denoting the larger (smaller) of pu and pr by p > ( p < ) ,  
we have Ps = 2p,uxLx. 

For the droplet, we use equation (2.3). Thus, near T = 0, where the shape is just a 
rectangle, we have ZD = 2v’4JxJ,,fLxL,. Similarly, near T,, PD = 2~7r~~u , , ( fL ,L ,~ ) .  In 
either case, we can write these as ZD = 2 K f  u,L,, where the geometric factor 
g = 4 or 7r accordingly. 

Equating Zs and ZD then yields the simple result 

f = - L  1 P  
C 

g P> 

which is always less than the values for the isotropic-square case. 

3. Finite-size dependence of fe 

To visualize the droplet-strip transition, and to confirm the exact results of the last 
section, we study the equilibrium configurations by Monte Carlo method. Since we 
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are interested only in systems with fixed mean magnetization 6, we are seriously limited 
by slow dynamics and metastability. Thus, we can only extract sensible results from 
runs of relatively small L. This necessitates the study of finite-size properties off,. 
From now on we will be concerned only with the equal coupling case. 

Several sources of finite-size effects can be identified. They arise from: 
( a )  entropy terms in Z associated with the mean position of the cluster; 
( b )  differences in the finite-size effects of U between the strip and the droplet; 
(c) Gibbs-Thomson relation, which describes the modification of the bulk magnetiz- 

ation in the presence of a finite droplet. 
First we discuss the effects of the entropies. Under PBC, the random walk associated 

with the centre of the cluster contributes a term - k B T  In N to Z, where N, the 
degeneracy, is 2L for the strip and L2 for the droplet. This in principle yields a In L/ L 
correction to f,. However, simulation runs in practice are too short to properly sample 
these entropies. The reason has to do with the cluster diffusivity D being very small. 
D, defined as the mean square distance travelled per unit time, decreases as a power 
of the cluster size (Binder and Kalos 1980). For large L, in either the strip or droplet 
phase, the dominant process contributing to D comes from evaporation and condensa- 
tion of spins at different places on the interface. This gives D - e-8P'L-'. To sample 
the entropies by simulation, the number of Monte Carlo steps T must be sufficiently 
long that (DT)"'> CL, where c is some large number. As an example, taking c = 10 
and L=30 leads to 7 >  10' for both the droplet and the strip. This is two to three 
orders of magnitude longer than our simulations. Therefore, we may neglect the effects 
of the entropies. 

It is more difficult to assess the significance of source ( 6 ) .  It has been well established 
that for planar interfaces, the leading finite-size correction to o' in ZD is In L/ L (Privman 
1988, Gelfand and Fisher 1988) .  This applies to the strip phase. Although we expect 
the same form of correction to hold for the droplet, the computation of the coefficient 
appears difficult-it is not clear whether the lattice can be ignored. Should the 
coefficients be different, a In L / L  term in fc should be present. However, from the 
simulation results (see next section), such a term seems to be absent. Since cancellation 
normally does not occur, this may again be a consequence of improper sampling of 
capillary wave excitations, which are the sources of the In L / L  correction; as the 
interfaces evolve very slowly. In any case, as far as the simulations are concerned, the 
leading correction in our data appears to be of order 1/L .  

The third source is the Gibbs-Thomson effect, which leads indeed to an O( 1/ L )  
correction. Since simulations are done at fairly high T (0.8 and 0.9Tc), the leading 
finite-size effects can be deduced by studying a fully isotropic model. 

In the range of magnetization of interest (well inside the coexistence region), the 
droplet radius R is much greater than the bulk correlation length tB which is of the 
same order as the interface width. When te is not too small, it is meaningful to consider 
a continuum model implicitly obtained by some suitable coarse graining on the discrete 
model. To describe such a model with short-range interaction, we use the standard 
coarse-grained local magnetization 4 ( x )  in conjunction with the Landau-Ginzburg 
free energy: 

where the potential U has the usual double-well structure with degenerate minima at 
* M  (e.g. the usual d4-potentia1 below T J .  To conserve the total magnetization, 4 
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satisfies a global constraint I d d x 4  = &V. (3.2) 

We assume that the total free energy in either phase can be decomposed into two 
terms: a bulk term proportional to V, and a surface term proportional to the area of 
interfaces. Thus, for the droplet and the strip, we have respectively 

F D =  U ( 4 + ) V D +  U ( 4 - ) ( V -  VD)+uDAD ( 3 . 3 ~ )  
Fs = U ( * M ) V + 2 rs L. (3 .3b)  

In (3 .36)  we take * M  to be the bulk densities for the strip, because the error is 
exponentially small. This is not the case for the droplet. Under fixed total magnetization, 
the equilibrium between a droplet of finite radius R and its surrounding bulk is reached 
by maintaining a finite ‘chemical potential’ difference between the + M  and - M  phases 
in order to balance the ‘pressure’ exerted on the droplet surface. This is achieved by 
modifying the bulk magnetization: #J* = * M  + 84, since to lowest order the corrections 
are the same in both the + M  and - M  phases. Since the ‘pressure’ is proportional to 
1/ R, we expect 84 - 1/ R. 

For convenience, we choose U ( * M )  = 0. By definition, dU(*M) /d4  = U‘(*M) = 
0. We denote 

x-l U”( M )  = U”( - M )  (3 .4)  
since U is symmetric in 4. Expanding U about * M ,  ( 3 . 3 ~ )  becomes 

1 
FD = - ( s+ )*L*+  UDCR 

2X 
(3 .5)  

where the mean droplet (not necessarily circular) radius is R =  Vg2,  and the area 
ADZ cR. The shape factor c is 2& for a circular droplet. 84 is determined by 
minimizing F D  subject to the global constraint (3.2), which yields the correction to the 
volume fraction 

R 2  4-4-  
L * - d + - &  

84 =f--+.  , 
2 M  

After eliminating 84 in (3 .5) ,  the values of 84 and R at which F D  is a minimum are 
determined to be 

(3 .6)  

(3.7) 

where (= cXuD/2(2M)2 is usually called the capillary length. 
Expressing F D  in terms o f f ,  the critical fraction f,(L) can easily be derived by 

equating F D  to Fs. Following the above discussion, we may neglect the difference 
between uD and us, and arrive at 

f ( L ) = ( 2 ) 2 + $ + o ( $ ) .  C (3 .8)  
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In the limit of L+ 00, the droplet shape is circular, we recover the exact result 1l.n. 
For finite L, the droplet shape must reflect the square geometry of the system, as 
R /  L( = l/&) is quite large. Allowing for this deviation, c = 2&+ Sc, with Sc + 0 as 
L --f W. We believe that Sc is exponentially small, since the only way the droplet ‘knows 
about’ the boundaries is through the bulk correlation. Thus, the leading correction 
relevant to simulations is of order 1/L. This forms the basis of the extrapolation of 
our Monte Carlo data. 

4. Monte Carlo simulation 

Simulating the Ising model on a square lattice using Kawasaki dynamics (Kawasaki 
1972), we locate the (L-dependent) phase boundary &,( T )  by first performing a reverse 
temperature quench from T = 0 ,  either at fixed, small or large 6 (i.e. starting with 
either a compact droplet or a strip). After the system reaches equilibrium, the magnetiz- 
ation is changed in small steps at fixed T across C$c. To define a quantitative measure 
of whether the system is in a strip or a droplet phase, we consider the structure factors 
S, = S( k,  = 2 7 ~ /  L, k, = 0) and S, = S( k,  = 0, k,. = 27r/ L ) .  The droplet-strip transition 
can now be determined by studying the distribution function P(AS), where AS= 
IS, - S,] .  In the droplet phase, P peaks about zero, while it peaks at a finite AS in the 
strip phase. The transition is identified as the point of equal peak heights. 

Because of the long lifetimes of metastable states near C$,, and slow dynamics at 
low T, our simulation is in practice limited to relatively small system sizes ( L  s 40) 
and high temperature ( T 3 0.8 T,). Despite these constraints, the transition is fairly 
well defined, and a linear extrapolation to the L = M limit correctly reproduces the 
exact analytical values of &= (figure 3). It is somewhat unfortunate, at these tem- 
peratures, that the exact results come so nearly isotropic that the extent and beauty 
of the anisotropic surface tension cannot be fully appreciated in our simulations. 

5. Summary and outlook 

We investigated the effects of boundary conditions and system geometry on equilibrium 
crystal shapes of Ising systems. A new class of transitions ‘inside the coexistence curve’, 
characterized by different cluster shapes is found. Their existence depends crucially 
on not only the conservation of total magnetization, but also periodic boundary 
conditions (across some edges). Since the anisotropic surface tension of the ZD Ising 
model on a square lattice is known exactly, we are able to locate the phase boundary 
for all temperatures below T,, and show its explicit dependence on the anisotropy of 
the nearest neighbour couplings and the (rectangular) system geometries. We carried 
out Monte Carlo simulations on the isotropic, square system and confirm these 
predictions. We emphasize that these transitions survive the thermodynamic limit and 
we studied the leading corrections due to finite-size effects. 

It is clear that the transitions we found depend on the topology of the system as 
well. For example, if our Ising model is realized on the surface of a sphere, then there 
would be no strips at all. The system will always phase separate into two droplets, i.e. 
regions with unity as its homotopy group. Although such a system may be difficult to 
simulate, since one cannot put a homogeneous lattice on a sphere, it is conceivable to 
study the liquid-gas system within the context of molecular dynamics (see e.g. Sikkenk 
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Figure 3. Linear extrapolations of the Monte Carlo data of the mean magnetization TC( T L) 
at the transition at temperatures ( a )  T =  0.9Tc and ( b )  0.8Tc. The arrows indicate the exact 
results obtained in section 2. 

et a1 1987). Of course, the droplet will be uninterestingly circular in this case. At a 
more ‘academic’ level, we can pursue the issue further and investigate how these 
transitions will be affected if we impose other boundary conditions on the square 
lattice, such as shifted periodic and those corresponding to a Mobius band, a Klein 
bottle and the projective plane. 

We end with some remarks concerning the first-order nature of these phase boun- 
daries. Clearly, each configuration is a local minimum (of an appropriate coarse grained 
free energy functional). That is, an energy barrier exists between these local, degenerate 
minima at the transition point itself. Slightly beyond the transition, the configuration 
with the higher energy will be metastable. Following the usual line of study of first 
order transitions, we naturally ask about the ‘saddle point’, the energy of which will 
control the lifetime of the metastable states (Fisher 1967, Langer 1967). Far below 
criticality, it is sufficient to approximate the total free energy by only the surface term, 
i.e. 

E [ S ] =  da(n*)cr(n*) i, 
where the integral is taken over the interface S between the coexisting phases. If we 
were to seek the saddle point following the methods for bulk first-order transitions, 
we would look for a configuration So which extremizes (5.1), i.e. 

(5.2) 

Of course, the solutions to this equation will include the minima (droplet and strip) 
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as well. The distinguishing feature of So would be the existence of a single negative 
eigenvalue in the stability matrix S2E/SS21 , .  

We believe that carrying out this program literally would fail for our case. In 
particular, we conjecture that So is just a lens-shaped 'pinched strip' (see figure 4) with 
the interface meeting at a single point. Then, E [ S ]  is not analytic at this 'saddle point', 
so that, instead of satisfying ( 5 . 2 ) ,  the first derivative is discontinuous. In pictorial 
terms, the energy functional resembles more like a knife-edged ridge there than a 
smooth saddle. 

- b L / 2  

6 L '  
1 
T 

Figure 4. The proposed saddle point, characterized by interface shape So (full curve), 
associated with the first-order droplet-strip transitions. Small deviations towards a droplet 
(broken curve) and a strip (dotted curve) are also shown. 

To support our conjecture, we present some quantitative results for the case where 
the surface tension is isotropic and fc = I /  T. Here, So is composed of two arcs of a 
circle of radius R, which can be related to the volume of the droplet ( L 2 / r )  and L via 

L 
sin 8 = - 

2 R  ' (5.3) 

Note that 28 is the angle of contact between the two arcs, satisfying the transcendental 
equation 

(5.4) 

Numerically, 8 = 0.860(49.3"). The ratio E[S,]/E[strip] is just @/sin 8, which is indeed 
greater than unity. The difference EISo] - E[strip] =0.135E[strip] is the leading contri- 
bution to both the (essential) singularities associated with the droplet-strip transition, 
as well as the lifetime of metastable states near the transition. 

To exhibit the nature of a saddle at So, we investigate how E changes for small 
variations away from So. I f  we hold the pinching point fixed, it is a standard calculation 
to show that small variations of the arc (which conserves the droplet volume) will lead 
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to a longer interface and a larger E [ S ] ,  at the second-order level. On the other hand, 
we may ‘release’ the pinched point (figure 4), so that, for example, the lens length is 
shorter than L by SL. Some simple algebra leads to 

S E  S L  sin e COS e SL 
= -0.575 -. 

E L  e L 
_-  (5.5) 

This equation supports our conjecture in that ( a )  the j r s t  variation does not vanish 
and ( b )  the energy decreases from EISo] .  

A similar calculation can be done for releasing the pinched point so that the 
configuration is closer to the strip (see figure 4). Denoting the gap opened up at the 
pinched point by SL’, we find 

SE SL’ sin2 0 s L’ - -0.668 - _-  
E ~e L (5.6) 

thus supporting our claim of a ridge-shaped saddle at So. 
To summarize, we have shown that our saddle point has the novel feature that it 

does not satisfy the Euler-Lagrange equation. Although there is no reason to believe 
that the prefactor of the essential singularities associated with this transition will be 
significantly altered from the standard forms, we believe that this novelty deserves 
further studies. 
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